728x170
직각삼각형 속의 닮음 관계
∠A = 90°인 직각삼각형 ABC의 꼭짓점 A에서 빗변 BC에 수선(수직선)을 긋고, 수선의 발을 D라 할 때, 크기가 다른 3개의 직각삼각형은 서로 닮은 도형입니다.
[1] △ABC ∽ △DBA
∠A = ∠D = 90°이고, ∠B는 공통 각이므로, AA 닮음조건입니다.
[2] △ABC ∽ △DAC
∠A = ∠D = 90°이고, ∠C는 공통 각이므로, AA 닮음조건입니다.
[3] △DBA ∽ △DAC
① △DBA에서, ∠B + ∠BAD = 90°
② △DAC에서, ∠C + ∠CAD = 90°
③ △ABC에서, ∠A = ∠BAD + ∠CAD = 90°
from ① = ③, ∠B + ∠BAD = ∠BAD + ∠CAD
∴ ∠B = ∠CAD (기호, ●)
from ② = ③, ∠C + ∠CAD = ∠BAD + ∠CAD
∴ ∠C = ∠BAD (기호, ×)
따라서
∠D = 90°이고, ∠B = ∠CAD 또는
∠D = 90°이고, ∠C = ∠BAD 또는
∠B = ∠CAD이고, ∠C = ∠BAD이므로, AA 닮음조건입니다.
[참고] 직각삼각형 ABC의 넓이로부터,
반응형
그리드형(광고전용)
'중등수학' 카테고리의 다른 글
3% 소금물 200 g을 증발시켜 4% 소금물로 (0) | 2019.01.10 |
---|---|
연립방정식. 13% 용액 x g과 8% 용액 y g (0) | 2018.07.10 |
정육면체의 부피와 한 모서리의 길이 (0) | 2017.05.16 |
수의 분류 (0) | 2016.10.25 |
삼각형의 합동조건 (1) | 2014.08.06 |
[책] 칸토어가 들려주는 집합 이야기 (0) | 2014.02.15 |
다항식의 계산. 곱셈 공식. (a+b)(a-b) 유형 (0) | 2013.12.21 |
회전체인 '구'에도 '모선'이 있다 없다 (0) | 2013.12.03 |
댓글