N2 gas laser 337 nm 3.83 mJ
질소 기체 레이저는 파장이 337 nm이고 에너지가 3.83 mJ인 펄스를 가진다.
이 펄스가 가진 광자의 수는 몇 개인가?
A nitrogen gas laser pulse with a wavelength of 337 nm
contains 3.83 mJ of energy. How many photons does it contain?
---------------------------------------------------
(1) 광자의 파장을 광자의 에너지로 바꾼다.
이때 에너지는 광자 1개의 에너지임에 주목.
(2) “펄스의 에너지 = 전체 광자가 가진 에너지” 이므로,
펄스의 에너지 / 광자 1개의 에너지 = 전체 광자의 개수
① E = hν = hc / λ
( 참고 https://ywpop.tistory.com/4964 )
= [(6.63×10^(-34) J•s) (2.998×10^8 m/s)] / [337 nm × (1 m / 10^9 nm)]
= (6.63×10^(-34)) (2.998×10^8) / (337 / 10^9)
= 5.898×10^(-19) J
---> 광자 1개의 에너지
= 5.898×10^(-19) J/개
② mJ을 J로 환산하면,
3.83 mJ × (1 J / 1000 mJ) = 0.00383 J
③ 0.00383 J × (1개 / 5.898×10^(-19) J)
= 6.49×10^15 개
또는
0.00383 J / (5.898×10^(-19) J/개)
= 6.49×10^15 개
답: 6.49×10^15 개
[참고] ②, ③ 계산할 때는
항상 환산 인자(단위 소거법) 기법을 생각할 것.
( 참고: 환산 인자 https://ywpop.tistory.com/3121 )
[ 관련 예제 https://ywpop.tistory.com/19270 ] 500 nm 복사선의 에너지 (kJ/mol)
'일반화학 > [06장] 원자의 전자 구조' 카테고리의 다른 글
다음 양자수들을 갖는 원자 내 전자의 최대 수를 계산 (0) | 2022.06.01 |
---|---|
100 watt bulb 100 J/s 525 nm photon (1) | 2022.06.01 |
4.62×10^14 Hz를 nm로 환산 (0) | 2022.06.01 |
전자가 가질 수 있는 양자수 조합 (0) | 2022.05.31 |
107.1 MHz 2.12×10^(-10) m 3.97×10^(-19) J/photon (0) | 2022.05.24 |
전자의 바닥 상태와 들뜬 상태 (0) | 2022.05.13 |
양자수로 표시한 전자의 오비탈 (0) | 2022.05.11 |
바닥상태에서 반자성을 나타내는 원소 (0) | 2022.05.09 |
댓글